1	i	C, mid pt of AB = $\left(\frac{11+(-1)}{2}, \frac{4}{2}\right)$ = (5, 2)	B1	evidence of method required – may be on diagram, showing equal steps, or start at A or B and go half the difference towards the other	
		$[AB^2 =] 12^2 + 4^2 [= 160]$ oe or $[CB^2 =] 6^2 + 2^2 [=40]$ oe with AC	B1	or square root of these; accept unsimplified	
		quote of $(x - a)^2 + (y - b)^2 = r^2$ o.e with different letters	B1	or (5, 2) clearly identified as centre and $\sqrt{40}$ as r (or 40 as r^2) www or quote of <i>gfc</i> formula and finding c = -11	
		completion (ans given)	B1	dependent on centre (or midpt) and radius (or radius ²) found independently and correctly	4
	ii	correct subst of $x = 0$ in circle eqn	M1		
		$(y-2)^2 = 15 \text{ or } y^2 - 4y - 11 \text{ [= 0]}$	MI	condone one error	
		$y-2=\pm\sqrt{15}$ or ft	M1	or use of quad formula (condone one error in formula); ft only for 3 term	
		$[y =]2 \pm \sqrt{15} \text{ cao}$	A1	if $y = 0$ subst, allow SC1 for (11, 0) found alt method: M1 for y values are $2 \pm a$ M1 for $a^2 + 5^2 = 40$ soi M1 for $a^2 = 40 - 5^2$ soi	
				A1 for $[y=]2\pm\sqrt{15}$ cao	4

iii	grad AB = $\frac{4}{11-(-1)}$ or 1/3 o.e.	M1	or grad AC (or BC)		
	so grad tgt = -3 eqn of tgt is $y - 4 = -3(x - 11)$	M1 M1	or ft -1 /their gradient of AB or subst (11, 4) in $y = -3x + c$ or ft		
	y = -3x + 37 or $3x + y = 37$	AI	(no ft for their grad AB used) accept other simplified versions		
	(0, 37) and (37/3, 0) o.e. ft isw	B2	B1 each, ft their tgt for grad $\neq 1$ or 1/3: accept x = 0, y = 37 etc		0.0
			NB alt method: intercepts may be		-
		1.11	find eqn	6	1

2		$(x-4)^2 - 16 + (y-2)^2 - 4 = 9$ o.	M2	M1 for one completing square or for $(x - 4)^2$ or $(y - 2)^2$ expanded correctly or starting with $(x - 4)^2 + (x - 2)^2$	
				M1 for correct expn of at least one bracket and M1 for 9 + 20 = r^2 o.e.	
		rad = √29	В1	or using $x^2 - 2gx + y^2 - 2fy + c = 0$ M1 for using centre is (g, f) [must be quoted] and M1 for $r^2 = g^2 + f^2 - c$	3
	ii	$4^2 + 2^2$ o.e = 20 which is less than 29	M1 A1	allow 2 for showing circle crosses x axis at -1 and 9 or equiv for y (or showing one positive; one negative); 0 for graphical solutions (often using A and B from (iii) to draw circle)	2
		showing midpt of AB = (4, 2) and showing AB = $2\sqrt{29}$ or showing AC or BC = $\sqrt{29}$ or that A or B lie on circle	2 2	in each method, two things need to be established. Allow M1 for the concept of what should be shown and A1 for correct completion with method shown	
		or showing both A and B lie on circle (or AC = BC = $\sqrt{29}$), and showing AB = $2\sqrt{29}$ or that C is midpt of AB or that C is on AB	2 2	allow M1A0 for AB just shown as $\sqrt{116}$ not $2\sqrt{29}$ allow M1A0 for stating mid point of AB = (4,2) without working/method shown	
		or that gradients of AB and AC are the same or equiv.		NB showing AB = $2\sqrt{29}$ and C lies on AB is not sufficient – earns 2 marks only	
		<u>or</u> showing C is on AB and	2		
		showing both A and B are on circle or AC = BC = $\sqrt{29}$	2	if M0, allow SC2 for accurate graph of circle drawn with compasses and AB joined with ruled line through C	4
	iv	grad AC or AB or BC = $-5/2$ o.e.	M1	may be seen in (iii) but only allow this M1 if they go on to use in this part	
		grad tgt = -1 /their grad AC	M1	allow for $m_1 m_2 = -1$ used	
		tgt is $y - 7 =$ their $m(x - 2)$ o.e.	M1	eg y = their mx + c then (2, 7) subst; M0 if grad AC used	
		<i>y</i> = 2/5 <i>x</i> + 31/5 o.e.	A1	condone $y = 2/5x + c$ and $c = 31/5$	4
Phy.	sicsA	ndMathsTutor.com		0.	

3	i	7-3	M1	not from using $-\frac{1}{2}$	
5	•	grad AC = $\frac{7-5}{2}$ or 4/2 o.e.[= 2]	1011	not nom using 72	
		so grad AT = $-\frac{1}{2}$	M1	or ft their grad AC [for use of $m_1m_2 = -1$]	
		eqn of AT is $y - 7 = -\frac{1}{2}(x - 3)$	M1	or subst (3, 7) in $y = -\frac{1}{2}x + c$ or in 2y + x = 17; allow ft from their grad of AT, except 2 (may be AC not AT)	
		one correct constructive step towards $x + 2y = 17$ [ans given]	M1	or working back from given line to $y = -\frac{1}{2}x + 8.5$ o.e.	4
	ii	x + 2(2x - 9) = 17	M1	attempt at subst for <i>x</i> or <i>y</i> or elimination	
		5x - 18 = 17 or 5x = 35 o.e. x = 7 and y = 5 [so (7, 5)]	A1 B1	allow $2.5x = 17.5$ etc graphically: allow M2 for both lines correct or showing (7, 5) fits both lines	3
	iii	$(x-1)^{2} + (2x-12)^{2} = 20$ $5x^{2} - 50x + 125[=0]$ $(x-5)^{2} = 0$ equal roots so tangent	M1 M1 A1 B1	subst $2x - 9$ for y [oe for x] rearranging to 0; condone one error showing 5 is root and only root explicit statement of condition needed (may be obtained earlier in part) or showing line is perp. to radius at point of contact	
		(5, 1)	B1	condone $x = 5, y = 1$	
		or			
		$y - 3 = -\frac{1}{2}(x - 1)$ o.e. seen	M1	or if $y = 2x - 9$ is tgt then line through C with gradient $-\frac{1}{2}$ is radius	
		subst or elim. with $y = 2x - 9$ x = 5 (5.1)	M1 A1 B1		
		showing (5, 1) on circle	B1	or showing distance between (1, 3) and $(5, 1) = \sqrt{20}$	5

4	i	0.2 to 0.3 and 3.7 to 3.8	1+1	[tol. 1mm or 0.05 throughout qn]; if 0, allow M1 for drawing down lines at both values	2
	iB	$x + \frac{1}{x} = 4 - x$	M1	condone one error	
		their $y = 4 - x$ drawn	M1	allow M2 for plotting positive branch of $y = 2x + 1/x$ [plots at (1,3) and (2,4.5) and above other graph] or for plot of $y = 2x^2 - 4x + 1$	
		0.2 to 0.35 and 1.65 to 1.8	B2	1 each	4
	ii	(0, ±√3)		condone $y = \pm \sqrt{3}$ isw; 1 each or M1 for 1 + $y^2 = 4$ or $y^2 = 3$ o.e.	2
	iii	centre (1, 0) radius 2 touches at (1, 2) [which is distance	1+1 1	allow seen in (ii)	
		all points on other branch > 2 from centre	1	allow it for both these marks for centre at $(-1, 0)$, rad 2; allow 2 for good sketch or compass-	
				drawn circle of rad 2 centre (±1, 0)	4