

iii	$\begin{aligned} & \operatorname{grad} \mathrm{AB}=\frac{4}{11-(-1)} \text { or } 1 / 3 \text { o.e. } \\ & \text { so grad tgt }=-3 \\ & \text { eqn of tgt is } y-4=-3(x-11) \end{aligned}$ $y=-3 x+37 \text { or } 3 x+y=37$ $(0,37)$ and $(37 / 3,0)$ o.e. ft isw	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { B2 } \end{aligned}$	or grad AC (or BC) or $\mathrm{ft}-1 /$ their gradient of AB or subst $(11,4)$ in $y=-3 x+c$ or ft (no ff for their grad AB used) accept other simplified versions B1 each, ft their tgt for grad $\neq 1$ or $1 / 3$; accept $x=0, y=37$ etc NB alt method: intercepts may be found first by proportion then used to find eqn	6	

\begin{tabular}{|c|c|c|c|c|c|}
\hline 4 \& i

iB \& \begin{tabular}{l}
$$
0.2 \text { to } 0.3 \text { and } 3.7 \text { to } 3.8
$$
$$
x+\frac{1}{x}=4-x
$$ \\
their $y=4-x$ drawn

 \&

1+1 \\
M1 \\
M1

 \&

[tol. 1 mm or 0.05 throughout qn]; if 0 , allow M1 for drawing down lines at both values \\
condone one error \\
allow M2 for plotting positive branch of $y=2 x+1 / x$ [plots at $(1,3)$ and $(2,4.5)$ and above other graph] or for plot of y $=2 x^{2}-4 x+1$
\end{tabular} \& 2 \\

\hline \& ii \& 0.2 to 0.35 and 1.65 to 1.8

$$
(0, \pm \sqrt{ } 3)
$$ \& B2 \& 1 each condone $y= \pm \sqrt{ } 3$ isw; 1 each or M1 for $1+y^{2}=4$ or $y^{2}=3$ o.e. \& 4

2 \\

\hline \& iii \& | centre $(1,0)$ radius 2 |
| :--- |
| touches at $(1,2)$ [which is distance |
| 2 from centre] |
| all points on other branch >2 from centre | \& \[

$$
\begin{aligned}
& 1+1 \\
& 1 \\
& 1
\end{aligned}
$$

\] \& | allow seen in (ii) |
| :--- |
| allow ft for both these marks for centre at $(-1,0)$, rad 2 ; |
| allow 2 for good sketch or compassdrawn circle of rad 2 centre ($\pm 1,0$) | \& 4 \\

\hline
\end{tabular}

